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Current Applications - iPhone 12
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http://www.youtube.com/watch?v=6Ki46BeyU-M

Composite Structure

Composition of Composites

Fiber/Filament
Reinforcement Matrix Composite

® A composite is comprised of a Matrix Material and an Inclusion Material.
o e.g. Carbon Fiber = Thin Carbon Reinforcements + Epoxy/Resin Base

e For this experiment
o Matrix: PLA/ABS
o Inclusion: Independent Variable

Northwestern | ENGINEERING



Why are Composites Important?

® Enhanced Properties over regular materials

o Fracture resistance - Ceramic Shield
o Toughness
O
O

Improved strength
and toughness

Strength
Formability

Toughness

e High Performance Applications Sirengt

o Helmets to prevent Concussion

e \Waste Reduction
o Recyclability
o Greater strength = less material needed
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Enhanced Properties Figures
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Feature Engineering

e Not only can we use collected data from our experiments/dataset, we can also
use known Mechanical & Thermal properties of the materials we are using

Matrix Material (e.g. PLA)

Inclusion Material

Thermal 0.0439 | Particle Shape spherical, ellipsoid,
Conductivity etc.

Melting 152 | Particle Size relevant dimensions
Temperature of particle

Glass Transition 60  Dispersion # of materials
Temperature contacting the surface
Melt Mass Flow 6.09 | Volume Fraction Inclusion

Rate
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Volume/Total Volume

e Domain expertise tells us these are relevant to the final composite properties
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Original Dataset

Setting Parameters: Output Parameters: (Measured)

e Layer Height (mm) « Roughness (um)
e Wall Thickness (mm)
o Infill Density (%)

 nfill Pattern ()

* Tension (ultimate) Strenght (MPa)
« Elongation (%)

H layer_height = H wall_thickness = # infill_density = A infill_pattern = # nozzle_temperatu... =
e Nozzle Temperature (C°)
+ Bed Temperature (C?) B L vl - ke
. 0.02 0.2 1 10 10 920 200 250
 Print Speed (mm/s) - \ . s o
° Material () 0.02 7 90 honeycomb 225
0.02 1 80 grid 230
° Fan Speed (%) 0.02 4 70 honeycomb 240
0.02 6 90 grid 250
0.02 18 40 honeycomb 200
0.02 5 10 grid 205
0.02 10 10 honeycomb 210
0.02 9 70 grid 215
0.02 8 40 honeycomb 220
0.06 6 80 grid 220
0.06 2 20 honeycomb 225
0.06 10 50 grid 230
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Correlation Matrix
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Material Features + 3D Printer
Data = Good Data?

Not Exactly...
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Limitations

Data we found

- Homogeneous material

- 3D printing not Extruder data

- Steady state processing conditions
- small data set ~50 Data Points

Data we need = Filament Extruder

- Composite with inclusion material
- Potentially dynamic process (if 3D printing)
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Hardware to Collect Data

What is an Extruder? J
* A machine that is able to create :
filament for a 3d printer using
pellets of any material
* Motor + Extrusion Screw
e OQutputs spools of Filament

Why use an Extruder?
e Reusability

* Cost

* Customizability
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Feed-Forward Neural Network

® Input Parameters

Layer Height

Wall Thickness

Infill Density —>

Infill Pattern

Nozzle Temperature

Bed Temperature

Print Speed

Fan Speed

Features:
m—Thermal-Conductivity
m Melting Temperature

m—Glass TransitionTemperature
m—Melt-Mass How Rate

O O O O O O O O O

O
O

O

O O O O O O

® QOutput Parameters

Tensile Strength
Elongation

® Network Structure:

9 Inputs, 2 Outputs

3 Hidden Layers

30 Hidden Neurons/Layer
Batch Size - 20

Adam Optimizer

MSE Loss Function
Min-Max Normalization

Northwestern | ENGINEERING

© W.K. Liu, Northwestern Univ. 2021, 15



Results
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Training Loss Function

Training Loss over Time
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Actual vs. Predicted
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Overfitting Control

[4] # Split Train and Test Data
test_count = 10

import random

idx_order = list(range(features.size(0)))
random.shuffle(idx_order)

idx_train = idx_order[:-test_count]

idx test = idx_order[-test_count:]

train = torch.utils.data.TensorDataset(features_n[idx train], targets n[idx train])

test = torch.utils.data.TensorDataset(features n[idx test], targets_n[idx test])

train_loader = torch.utils.data.Dataloader(train, batch_size = batch size, shuffle = True, num workers=2)
#test_loader = torch.utils.data.DataLoader(test, batch_size = batch_size, shuffle = False, num workers=2)

® Random Test Split to Validate Data — Similar to k-fold cross validation
e Regularization:

o Limiting the magnitude of the weights through weight decay

# loss and opimizer
criterion = nn.MSELoss()

optimizer = torch.optim.Adam(model.parameters(), lr=learning rate, weight decay = 0.01)
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Progress + Timeline
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RNN

® ® ® ©

.

» >

L
I

> >

'

®
—.A

An unrolled recurrent neural network.

3D printing process

An RNN could map sequential and dynamic AM process parameters to
resulting property

Potential to control constitutive properties (RPM, Temperature)
throughout a part by manipulating the printing process during AM
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Future Goals

® Finish the Extruder, and test with different Inclusion

Materials

e Collect data to expand the current dataset and fit our

parameters
® Create a Dataset that has more versatility

o Predict tensile strength/elongation of unknown

material
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Thanks!

Questions?
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