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It is often helpful to speak about functions as maps between two collections of
objects. That is, a function f takes an object from a set A and maps it to an
object from set B. We write this as f: A — B.
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A Meta View of Neural Networks
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We can thus formulate the objective of neural networks as follows. Given a

secret function f : A — B, train a network to find function f*: A — B so that

for every element x € A. Examples include:

1. Classification: f : {input pixels and colours} — {cat, dog, car, ...}
2. Al-driven ads: f : {previous purchases} — {possible future purchases}

3. Self-driving cars: f : {visual data} — {possible car mancuvers}
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Weaknesses of Neural Networks
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A relevant weakness in using NN’s is its sensitivity to the way data is inputted.
For example, say you are trying to examine the microstructure of a sample of a

material. One may first decompose the sample into a 100 x 100 grid and run a
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Weaknesses of Neural Networks

However, we would like the freedom to change the grid size to capture different
features of the material (think: more resolution for finer details, and less reso-
lutions for coarser features.) Most NN architectures do not allow for this kind
of freedom, and data needs to be trained again from scratch. NN’s do not need
to be more computationally expensive than they already are.

Layer Type Complexity per Layer Sequentital Maximum Path Length
Operations
Self-Attention O(n*-d) 1) (1)
Recurrent . (> (}{H} O(n)
onvolutional (1) O(logi(n))
Self-Attention (restricted) ( (){1) O(n/r)
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Operator Learning and Neural Operators
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A recently studied remedy is to learn the underlying operator instead of an just
instance of it (which is what is really happening when a discretization is fixed).

An operator is a function ® : A — B where A and B are themselves sets
of functions. For example,

1. In computer science, "higher level functions”
2. Differentiation

3. Convolution

df

— : {differentiable functions} — {functions}

dx
f(x) = f'(x)
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Operator Learning and Neural Operators
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However, we may want to impose restrictions on what functions we allow in the

sets A and 3.

For example, in differentiation, we can only differentiate differentiable func-
tions. Other restrictions may include:

1. continuous
integrable

bounded

polynomial

A S

linear

Northwestern | ENGINEERING © W.K. Liu, Northwestern Univ. 2020, 9



Operator Learning and Neural Operators**
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In my research, a useful restriction is to Sobolev functions. Intuitively, they
are a generalization of differentiable functions.

A little more formally, they are a class of functions whose p-th power is in-
tegrable and has "nice” partial derivatives.

8.2 The Sobolev Space W1-?(I)

A First Course
in Sobolev Spaces

Let I = (a.b) be an open interval, possibly unbounded, and let p € | with 1 =<
po=oc.

Definition. The Sobolev space wlrn!is defined to be

Giovanni Leoni

when = {u e LP(Iy; 3g € LP(I) such that [mp{= —fggo Vg € Ci(!) .
! !

We set
H'(1) = W'2(1). |
) 3
Foru e WLP(J’) we denote * ' = g.
Remark 1. In the definition of W'# we call ¢ a rest function. We could equally SECEQI.NODN

well have used C2¥(f) as the class of test functions because if ¢ € Cll. (1), then
pu %@ € C2°(I) for n large enough and p, * ¢ — ¢ in C' (see Section 4.4; of
course, ¢ is extended to be 0 outside 1).
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Fourier Neural Operators

A particular architecture of neural operators are called Fourier Neural Oper-
ators (think: convNets, RNN’s, FFNN's, etc.) They are inspired by the study
of differential equations and Fourier analysis.

The distinguishing components of FNO’s are called Fourier layers, and are just
learnable kernel functions - just like kernels in a convNet.

®—> Fourier layer 1

4){F0urier layer 2

—> @ @ @ —>

Fourier layer T
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Fourier Neural Operators
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However, in some sense, FNO’s have only been proven to work when learning
operators between Sobolev spaces, not all functions! So if we are to use FNO'’s,
we best make sure the operator we are learning is a Sobolev function...

Theorem 1 (Kovachki et al., 2017). Lets > 0, and ® : H3(D;R™) — H*(D:RR¥)
be a continuous operator, and 2 C H®(D;R™) be compact. For every ¢ > 0,
there exists a Fourier neural network N : H*(D;R™) — H*(D;R¥) (which can
be regarded as a continuous operator) such that

sup | ®Pa — Na||g, <€
acf)
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A Mathematical Formulation of k-means Clustering
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Recall the k-means clustering algorithm from class. The goal is to partition
some domain €2 into & regions: 2,2, ..., based on some objective function
J. After the algorithm, we can assume that f is constant within cach €2;. This
has vast uses in engineering and material science.

Re(|z])

2=2
Self-consistent clustering analysis: an efficient multi-scale scheme for
inelastic heterogeneous materials

Zeliang Liu®, M.A. Bessa?, Wing Kam Liu®*
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Conjecture and Proposed Solution
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However, it turns out that piecewise constant functions are generally NOT
Sobolev functions! Hence we cannot immediately run FNO’s and expect con-
vergence.

However, we can approximate the “clustered” function analytically (ie. ex-
hibiting a Taylor expansion everywhere) using tanh(-). This follows because if
H(z)=0if xr <0 and H(x) =1 if x > 0, then

1
lim 5(1 + tanh(kx)) = H(x)

k— oo

1 ) —2kzy -1
3 +stanh(kz) = (1 +e %)

for every .

-4
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Conjecture and Proposed Solution
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As per my research, it is still an open problem if this approach works in 1
dimension, but it is our goal to prove this. We just need to consider certain
nuances such as: uniform convergence, rate of convergence and ultimately verity
findings using simulations.
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Future Research
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It will be most important to generalize this idea to multiple dimensions. Could
the same approach work?

Clustering in 1 dimension always look like intervals, which are ”well-behaved”.
However, clusters may be topologically different in higher dimensions!

Can we impose restrictions on clustering algorithms to make clusters "interval-

like” 7
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Thank you all for a great summer and good
luck in the future!

Questions too!
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